منابع مشابه
Witnessing entanglement without entanglement witness operators.
Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistic...
متن کاملQuantifying entanglement with witness operators
We present a unifying approach to the quantification of entanglement based on entanglement witnesses, which includes several already established entanglement measures such as the negativity, the concurrence, and the robustness of entanglement. We then introduce an infinite family of new entanglement quantifiers, having as its limits the best separable approximation measure and the generalized r...
متن کاملDetecting entanglement of random states with an entanglement witness
The entanglement content of high-dimensional random pure states is almost maximal, nevertheless, we show that, due to the complexity of such states, the detection of their entanglement using witness operators is rather difficult. We discuss the case of unknown random states, and the case of known random states for which we can optimize the entanglement witness. Moreover, we show that coarse gra...
متن کاملSpin Entanglement Witness for Quantum Gravity.
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. However, the lack of empirical evidence has lead to a debate on whether gravity is a quantum entity. Despite varied proposed probes for quantum gravity, it is fair to say that there are no feasible ideas yet to test its quantum coherent behavior directly in a laboratory experiment. Here...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2016
ISSN: 2469-9926,2469-9934
DOI: 10.1103/physreva.93.042317